728x90 반응형 머신러닝 이론1 (머신러닝) Supervised vs Unsupervised Learning 간단 정리 머신러닝에서 'Supervised'와 'Unsupervised Learning'에 대해 학습하고 그 차이점을 알아보자 Supervised Learning vs Unsupervised Learning 1. Supervised Learning (지도 학습) - 타겟 Y가 명확하게 존재하는 경우 사용하는 학습방법 ex) 어떤 사람이 상품을 샀다/안샀다 등 - 현업에서 만날 수 있는 대다수의 문제가 이 'supervised learning'에 해당 → Regression, Classification, Deep learning X(독립변수)와 Y(종속변수) 사이의 관계를 찾고, 이를 이용하여 미래의 Y(=target)값을 예측하는 원리 - Y가 categorical일 경우, Classification(분류) 영역.. Machine Learning/데이터 분석 이론과 기초 2024. 2. 27. 더보기 ›› 반응형 이전 1 다음